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An intruder to a group of identical beads contained in a circular plate which is subjected to a circular
vibration will trace approximately a cyclic spiral. The trajectory is a result of both migration and rotation. The
intruder migrates in the radial direction while rotating with a constant speed with respect to the center of mass
of the whole group of beads. The rotation velocity is due to friction between the beads and the container wall
and determined by the vibration amplitude and the number of beads. The migration direction is dependent on
the size ratio and mass ratio of the intruder to the background beads. The migration speed is constant for the
outward migration, but decreases gradually when the intruder migrates toward the center of mass of the whole
cluster for the inward case.
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I. INTRODUCTION

Granular materials are fascinating because they have ob-
vious solidlike properties but behave like a fluid under cer-
tain circumstances. For the same reason, their behavior is
difficult to study because neither Newtonian mechanics nor
fluid dynamics can be employed directly. In many cases, the
number of granular particles is so large that a collective be-
havior emerges, but still too small for this behavior to be
described by mean field theory. The Brazil nut effect �BNE�
is one such system that has been studied much experimen-
tally �1–5� and theoretically �6–16�. In BNE, a large intruder
rises all the way to the top of a group of small particles under
vertical vibration �6�. It was also reported that a large in-
truder can dive to the bottom if it has a large enough mass
�1,10�. In 2005, Schnautz et al. found that beads in a circular
plate under horizontal swirling motion behave similarly �17�.
Namely, a large bead will migrate either to the center or to
the border of the plate. In this horizontal version of the BNE
system, another interesting phenomenon was previously re-
ported �18�, in which the spin angular velocity of the cluster
of beads decreases with increasing packing density. Even
more amazingly, at a certain critical packing density, the an-
gular velocity becomes negative, i.e., the cluster and the
plate rotate in opposite directions. In this paper we study
horizontal BNE using molecular dynamics simulation. We
explain how a collective motion emerges and determine the
angular velocity of the cluster and the migration velocity of
the intruder.

A typical setup of circular horizontal BNE �17� is shown
in Fig. 1. 375 small plastic beads of radius d=0.3 cm and
mass m=0.39 g are placed in a circular plate of radius R
=6.9 cm. The plate is driven by a swirling motion—that is,
the center of the plate is rotating horizontally with respect to
a fixed point—of frequency wp /2�=1.2 Hz and amplitude
A=1.8 cm. A steel intruder of radius D=0.67 cm and mass
M =10.04 g was initially placed near the border of the plate.
It was observed to migrate toward the center of the plate. The
motion of the beads was recorded by a camera so that their
trajectories can be traced as shown in Fig. 1 for the intruder
and one of the plastic beads.

We simulated the motion of the beads by treating colli-
sions as a linear spring force �19,20�. The inelastic collisions

between beads are characterized by the normal restitution
coefficient ��1 in the simulation. The normal restitution
coefficient between the beads and the border is assumed to
have the same � for simplicity. Beads in the plate are sub-
jected to tangential frictions from the plate bottom and bor-
der. In our simulation, we found that the friction with the
plate bottom is not essential in the sense that for any value of
this friction from 0 to a certain value, the general behavior of
the beads are qualitatively the same as what we observed in
experiments. We thus simply neglect this friction in our
simulations. Friction with the plate border, on the other hand,
has to be considered appropriately so that the trajectories of
beads look similar to what we observed in the laboratory. We
assumed the friction between a bead and the plate border is
either a value proportional to vt, the relative tangential ve-
locity between them, or a Coulomb type proportional to the
spring force F, whichever is smaller �18�. Specifically, we
took the friction to be f =min��km �vt � ,�C �F � � with �k
=10,000 s−1 and �C=0.5 �18�.

II. COLLECTIVE MOTION

With appropriate amplitude A and number of beads N in
the plate, we found that the trajectory of any plastic bead is

FIG. 1. A typical trajectory of the background beads in a circu-
lar plate subjected to circular vibration is shown by the dotted
curve. The trajectory of an intruder �solid curve� has a cyclic spiral
shape.
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approximately a roulette, either an epitrochoid or a hypotro-
choid �Fig. 2� �21�. The intruder follows a similar path ex-
cept that its distance to the center of mass �CM� of the group
of beads decreases with time. If we connect its average po-
sitions in each vibration period by a smooth curve, the curve
would be close to a spiral. These roulette trajectories are a
corollary of the fact that the whole group of beads behaves
approximately as a spinning disk whose center rotates with
respect to the plate center. Namely, the cluster of beads ap-
proximately forms a compact disk of radius �=�N�d, �
=2�3 /��1.1 �22�. It spins with angular velocity ws. The
CM of the cluster is at the distance R−� away from the
center of the plate and rotates with angular velocity wp �Fig.
3�. The intruder, in addition to moving as a particle among
the cluster, migrates in radial direction to or away from the
CM. In what follows we show how the spin velocity ws and
migration velocity are related to the vibration amplitude A,
the number N of small beads in the plate, and the mass and
size ratios of the intruder to the background beads.

The background beads follow roulette trajectories only
when their number N is large enough. They gain energy

when hit by the plate border and lose part of this through
collisions with other beads. The energy loss due to collisions
rises rapidly with the number of beads so that at some critical
number the beads begin to move collectively �23�. When this
happens, we observe that the whole group of beads is con-
stantly hit by the border of the plate but its CM gains no
radial velocity. This behavior can be understood by assuming
that the effective restitution coefficient �ef f between the
group of beads and the plate border is zero when N is larger
than some critical value Nc. In this case we can approxi-
mately regard the whole group of beads as clustering com-
pactly into a single disk. In Fig. 4 we plot the average radial
velocity �vr	 of all the particles and the translational energy
ECM of their CM with respect to the plate coordinates as a
function of N. We see that when N is larger than the critical
value Nc, �vr	 goes to zero and ECM decreases monotonically
as 1

2Nm�R−��2wp
2, as one would expect for a disk of mass

Nm rotating with radius R−� and angular speed wp. Increas-
ing wp will increase the energy at equilibrium but will not
change Nc. On the other hand, increasing A will increase the
frequency of collisions among beads so that �ef f decreases
for a fixed N. As a result, Nc is smaller when A is larger �Fig.
4�.

III. ANGULAR VELOCITY OF THE WHOLE GROUP
OF THE BACKGROUND BEADS

When equilibrium is reached, both the plate and the disk
rotate with angular velocity wp with respect to the center of
circular vibration, with the disk lagging by a phase �. In the
meantime, the CM of the disk rotates with respect to the
center of the plate with the same constant angular velocity
wp. Notice that there is a force F normal to the center of the
plate exerted on the disk by the plate. A friction force f

FIG. 2. �Color� Trajectory of any background bead is approxi-
mately an epitrochoid �green� when wpws�0 or a hypotrochoid
�blue� when wpws	0. An intruder spirals either into the center �red�
when p�1 or out to the rim �not shown� when p	1.
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FIG. 3. The plate of radius R rotates with respect to the fixed
point X with constant angular velocity wp and amplitude A. The
disk of radius � in the plate rotates with respect to the center of the
plate with the same angular velocity wp when it is subject to a
normal force F and a tangential friction f such that both Eqs. �1�
and �2� are satisfied simultaneously.

FIG. 4. When N is larger than the critical number Nc, the dissi-
pation of energy is so large that the average radial velocity �vr	 of
all beads is close to zero. Beads move in a collective way and the
translational energy ECM of the center of mass with respect to the
plate coordinates will be given by 1

2Nm�R−��2wp
2. The value of Nc

is smaller when A is larger. �d=0.3 cm, R=4.5 cm, wp

=7.54 s−1 . �
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tangential to the rim of the disk must be present so that F
+ f yields the correct centripetal force toward the center of
circular vibration. On the other hand, in the plate coordi-
nates, F+ f plus the centrifugal force of the plate toward the
vibration center should also provide the correct force on the
disk so that it rotates with wp with respect to the plate center
�Fig. 3�. Therefore, we have

F

Md
= Awp

2 cos � + �R − ��wp
2, �1�

f

Md
= Awp

2 sin � , �2�

where Md is the mass of the disk. Assuming the friction is
proportional to the relative velocity at the contact point, we
have

�ef f�wp�R − �� + ws�� = Awp
2 sin � , �3�

where �ef f is the effective friction coefficient per unit mass.
Since F /Md has limits 0 and wp

2A at �=0 and �=R, respec-
tively, a simple approximation for F /Md is F /Md=wp

2A �
R .

The phase � is then uniquely determined from Eq. �1� �� has
to be positive, otherwise the disk is not stable�:

cos � =
�

R
−

R − �

A
. �4�

The phase calculated by Eq. �4� as a function of N is consis-
tent with the results of our simulation �Fig. 5�. Once the
phase is found, the spin velocity ws can be determined by Eq.

�3�. We found that our simulation results for ws for N	Nc,
which are qualitatively the same with the results of Ref. �18�,
can be obtained analytically from Eq. �3� if �ef f is given by

�ef f = c1ec2NwpA/R , �5�

with c1=0.228 and c2=0.024 �Fig. 5�. Certainly we would
expect that the effective friction �ef f is an increasing func-
tion of N since there will be more collisions between the
plate border and the beads in a vibration period when N is
larger. However, the particular exponential dependence of
�ef f on N �Eq. �5�� needs further explanation in the future.

It is interesting to note that, for systems with vibration in
one dimension, e.g., rectangular plate vibrating in longitudi-
nal direction �24� or standard BNE under vertical vibration
�1–16� friction with the container wall will normally induce
convection. That is why convection was considered to be a
possible cause of BNE �8�. In the circular vibration we dis-
cussed here, friction with the wall makes the whole cluster of
particles rotate with respect to its center but contributes noth-
ing to the migration of the intruder toward or away from the
CM.

IV. MIGRATION DIRECTION OF THE INTRUDER

In the previous section, we were able to determine the
spin of the whole group of beads by approximating them as
a compact disk when N is larger than Nc. On the other hand,
unless they fill the entire plate, the beads do not group to-
gether exactly like a disk. At the far end away from the
contact point between the plate and the whole group of
beads, the average distance between two neighboring beads
could be substantially larger than 2d. In this less dense re-
gion an intruder has the chance to change its relative radial
position in the group so that migration may occur. For ex-
ample, an intruder is observed to migrate toward the border
if there are less and less beads between it and the border at
the end of each vibration period. Note that it is crucial that,
in each period, beads can most likely change their relative
positions when they are all heading toward the less dense
region near the border of the plate. It is due to this fact that
an intruder will acquire a definite migration direction. When
the beads are all moving toward the border of the plate, a
large intruder, having a larger probability than its neighbors
to be hit from behind, tends to migrate toward the border. On
the other hand, a massive intruder, when hit, gains less ve-
locity relative to its neighbors, therefore tends to migrate
inward. In our previous work, we used a rectangular system
to demonstrate that the size and the mass of the intruder play
equal but opposite roles in determining the direction of the
migration �24�. We argued that the parameter p, given by p
= �1+D /d� / �1+M /m�, stands for the relative probability of
the intruder to its neighbors of being hit from behind and
obtaining a higher gain in speed. Therefore, the intruder will
migrate toward the CM of the beads if the parameter p is
p�1, but away from the CM if p	1. Our results of MD
simulations for the rectangular system �24� and the circular
system �25� were both consistent with the predictions of the
argument. In Fig. 6 we present some experimental data for
the circular system in supporting our theoretical predictions.

FIG. 5. Phase � and spin ws as a function of N for three different
amplitudes. Phase and spin determined by Eq. �1� and Eq. �3�, re-
spectively, are plotted as solid curves. �d=0.3 cm, R=4.5 cm, wp

=7.54 s−1 . �
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We plotted the distance of the intruder to the CM of the
cluster as a function of time for several different combina-
tions of D /d and M /m. We see that an intruder with p	1
indeed migrates outward, while an intruder with p�1 mi-
grates inward.

V. MIGRATION SPEED OF THE INTRUDER

Note the actual trajectory of an intruder varies with dif-
ferent initial distributions of the background beads even its
tendency is predictable. In the left column of Fig. 7 we plot-
ted the radial trajectories of the intruder in our MD simula-
tion using 60 different initial distributions for the background
beads. The initial position of the intruder is set to be near the

center of the plate for p	1 and at border for p�1. The
stochastic behavior of the intruder is clearly seen in Fig. 7.
The average results of these 60 runs are plotted in Fig. 8. We
see that the average migration path is apparently linear in
time for the outward migration �p	1�, which means the av-
erage outward-migration speed is a constant depending on
the value of p only. For the inward migration, we found that
the average paths are best fitted by the curves of the form
r�t�=r0 /�1−
t, where r0 is the initial position and 
 is a
constant depending on p. Thus the migration speed varies as
the intruder moves inward. We believe that the average spac-
ing between beads in the neighborhood of the intruder plays
an important role in determining the migration speed. A fur-
ther analysis on the migration speed is currently under inves-
tigation.

VI. CONCLUSION

To conclude, we have presented a comprehensive descrip-
tion for the behavior of beads in the horizontal Brazil nut
effect. A cluster of beads subject to circular vibration will
move collectively and synchronized with the external vibra-
tion when, due to their large number or a large vibration
amplitude, the collision frequency is so large that the effec-

FIG. 8. Average trajectories of MD �filled
square� for p�1 �left� and p	1 �right�. The
solid curves that fit the inward trajectories have
the form r�t�=r0 /�1−
t. �Distance is in units of
d.�

FIG. 6. Experimental data shows the intruder migrates inward
for p=0.16, 0.34, 0.43 �left�, and outward for p=1.27, 1.45, 1.93
�right�. �A=1.8 cm, R=6.9 cm, wp=7.54 s−1. Background beads
cover about 70% of the plate area.�

FIG. 7. Radial trajectories of the intruder using MD simulations
with 60 different initial distributions for the background beads. �N
=185, R=17d , A=1 cm, T=1 s , �=0.96.� �Distance is in units of
d.�
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tive restitution coefficient of inelastic collisions between the
plate border and the whole group of beads approaches zero.
The friction force between the beads and the plate border is
responsible for the rotation of the cluster with respect to its
center of mass. The average trajectory of any bead in this
collective motion can be approximately described by a
simple geometric curve. When the vibration amplitude is not
too large to prevent the beads from changing their relative
positions, an intruder will move with the cluster and at the
same time tend to migrate to either the center or the rim of
the cluster. The migration direction depends on the mass and

size ratios of the intruder to the surrounding beads and can
be well predicted. The average migration speed is a constant
for the outward migration, but for the inward migration, it
decreases as the intruder moves toward the center of the
cluster.
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